What are Endocannabinoids?

The endocannabinoid system (ECS) is a group of endogenous cannabinoid receptors located in the mammalian brain and throughout the central and peripheral nervous systems, consisting of neuromodulatory lipids and their receptors. These systems exist in humans and mammals. The endocannabinoid system helps our body organise itself, enabling cells to communicate better, creating and maintaining physiologic balance. It homeostatically regulates all body systems: nervous, digestive, immune, cardiovascular, endocrine, musculoskeletal, reproductive.

The Endocanninoid receptors in the human body respond to the Phyto cannabinoids in Cannabis.

Known as “the body’s own cannabinoid system”, the ECS is involved in a variety of physiological processes including:

  • Sleep
  • Appetite, digestion, hunger
  • Mood
  • Motor control
  • Immune function
  • Reproduction and fertility
  • Pleasure and reward
  • Pain
  • Memory
  • Temperature regulation

You have Cannabinoid receptors that are apart of your Endocannabinoid system which:

“is a group of endogenous cannabinoid receptors located in the mammalian brain and throughout the central and peripheral nervous systems, consisting of neuromodulatory lipids and their receptors.”

Meaning, these receptors are throughout our entire body and help our overall body function. Does this now seem a bit more important? It should.

With 37 thousand billion billion chemical reactions per second in the human body, wouldn’t you want these reactions to perform at their best, so the regeneration of new cells are properly supported by Cannabinol to function effectively throughout the body.

The Endocannabinoid System (ECS) maintains our biological systems by regulating each cell tissue. It uses Arachadonic acid/Omega 6 to make Endo-Cannabinoids: fatty molecules that communicate harm between cells. Dietary Cannabis mimics the ECS by providing Cannabinoids when there is an Arachadonic acid deficiency or Clinical Cannabinoid Deficiency.

Where do endocannabinoids come from?

If your body cannot produce enough endocannabinoids, you might be in for some trouble. But, where do endocannabinoids come from, anyway? This question has another simple answer  – your diet.

Your body creates endocannabinoids with the help of fatty acids. Omega-3 fatty acids are especially important for this. Recent research in animal models has found a connection between diets low in omega-3s and mood changes caused by poor endocannabinoid regulation.

Fortunately, hemp seeds are a quality source of omega-3s. However, fish like salmon and sardines produce a form of omega-3s that is easier for your body to put to use.

Beyond cell receptors

Cannabinoid receptors are often what we associate with the endocannabinoid system. But, the ECS is more complicated than that. Enzymes also have a crucial role to play in the process. In a way, enzymes are kind of like Pacman. They gobble up various compounds, change them, and then spit out the parts. In the ECS, enzymes break down leftover endocannabinoids. Enter non-psychoactive CBD.

Enter non-psychoactive CBD. While THC binds with cannabinoid receptors directly, CBD does not. Instead, it works it’s magic on an enzyme. The enzyme in question is called FAAH, and it is responsible for pulling excess anandamide out of circulation.

CBD puts a stop to this. Psychoactive THC works by mimicking the body’s own endocannabinoids. But, CBD increases the amount of endocannabinoids in your system.

CBD stops enzyme FAAH from breaking down all of the anandamide, and therefore makes more of it available for use by your cells. This is why CBD is a natural mood-lifter without psychoactive effects.

This is just a brief overview of the endocannabinoid system. Each year, new studies shed light into what this amazing network does inside our bodies. The discovery of the ECS is what makes medical cannabis such a big deal and why we want to ensure you can enjoy its benefits for your health.

People often joke about the herb’s ability to heal a wide variety of seemingly unrelated conditions. But, we now understand that these conditions are all regulated in part by the ECS. The medical implications of this finding are endless.

Researchers only recently discovered the endocannabinoid system (ECS), which in many ways resembles the internet of our body. Cells can use it as a kind of email since the ECS allows individual cells to send specific information to other cells in our body. This system helps cells coordinate our immune response for example, and enables the different systems of our body work together.

The foundations of the modern endocannabinoid system developed 600 million years ago to help single cell organisms manage the increased demand for information processing required to help single cells evolve into more complex multi-cellular organisms. Cells needed a way to talk to each other to share information and organize themselves into more complex bodies in this early chaotic environment. Multicellular organisms developed the ECS to help manage the flow of information between and within different cells so that individual cells in newly evolving bodies could share resources, protect themselves from harm, and make to prevent damage to their molecular machinery.

The ECS for example became a central mediator for how the earliest complex organisms reduced harm from things such as a lack of oxygen to their biological systems. Also, the ECS developed biological coordination to help individual cells share nutrition and energy with and between other cells in these newly evolving bodies. In complex biological systems such as humans, this ECS coordination of information prevents disease, and maintains the flow of information between cells.

Chronic disease both causes and results from biological dysfunction in the body. Appropriate cannabis use reduces harm caused by stress, by physiologic imbalances in chronic disease, and particularly in conditions and symptoms that increase as we age. The broad therapeutic potential of using cannabis to help the body balance its own ECS is just beginning to be realized, and major universities and pharmaceutical companies around the world are aggressively engaging in cannabinoid research.

The ECS maintains health and balance not only between different cells, but also within each single cell. Inside single cells, the ECS helps control basic metabolic functions such as sugar metabolism. Between individual cells, the ECS also regulates communication between our immune systems and our nervous systems. For example, when an immune cell needs to alert brain or nerve cells, it can send a biochemical email that functions through the endocannabinoid system. However during disease, a breakdown in ECS communication can disrupt this information flow, resulting in disease or death of the organism.

The Good Earth accepts payment via:

FDA/TGA Disclosure: Product should be used only as directed on the label. Consult with your health professional before use if you are pregnant or nursing or have a serious medical condition or use prescription medications. The advice of your health professional should be sought before using any supplemental or dietary product. All trademarks and copyrights are property of their respective owners and are not affiliated with nor do they endorse this product. These statements have not been evaluated by the FDA/TGA. This product is not intended to diagnose, treat, cure or prevent any disease. Individual results will vary. By using this site, you agree to follow the Privacy Policy and all Terms & Conditions printed on this site. Void Where Prohibited by Law.

Legal Disclaimer: The Good Earth Global or affiliates do not sell, distribute, or manufacture any products that are in violation of the United States Controlled Substances Act (US CSA). Information provided in this website is intended as a guide only and does not constitute legal advice. We endeavor to keep the information up to date and correct however make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the website for any purpose. Any reliance you place on such information is at your own risk.

Definitions: Anti-insomnia – aids sleep & relaxation Antiproliferative – inhibits cancer / tumour cell growth Antibacterial – kills or slows bacterial growth Neuro-protective – prevents nervous system degeneration Angiogenesis - prevents new blood cell growing into tumors Bone stimulant – promotes bone growth Antidiabetic – reduces blood sugar levels Immunomodulator – reduces or increases immune response Anti-inflammatory- reduces inflammation Analgesic – reduces & manage pain Anti-ischemic – reduces risk of artery blockage Anti-epileptic – reduces seizures and convulsions Anti-catabolic – reduces muscle wastage (sports, bodybuilding, post-operative) Intestinal prokinetic – reduces small intestinal contractions Antiemetic – reduces vomiting & nausea Anxiolytic / antidepressant – reduces anxiety & depression Appetite stimulant – increases appetite Anorectic – suppresses appetite Anti-spasmodic – suppresses muscle spasms Anti-psychotic – tranquilizer & anti-psychotic Antifungal – treats fungal infection Antipsoriatic – treats psoriasis Vasorelaxant – reduces tension in blood vessel walls